Problems undergoing the test in Mathematical Statistics

(2014-06-11, Corporate Management):

- 1. Give formulae for sums 1+2+3+...+n, $1^2+2^2+3^2+...+n^2$ $(n \in \mathbb{N})$ and prove them.
- 2. Define the *n*th triangular number, T_n , state the recursive formula for T_n , derive the concise formula for T_n .
- 3. Formulate the handshape problem, produce the recurrence for H_n (H_n stands for the number of handshakes exchanged by n people), obtain the concise formula for H_n .
- 4. Discuss permutations with and without repetitions, as wall as their numbers.
- 5. Discuss variations with and without repetitions as well as their numbers.
- 6. Formulate and prove (via the mathematical induction) the binomial theorem.
- 7. Give the definition of the binomial coefficient $\binom{n}{k}$, prove the recurrence for it,
- discuss where it appears.
- 8. Present the Pascal triangle. Connect it to the Manhattan walking.
- 9. Discuss the formula for $(1+x)^r$ when $r \in \mathbb{R}$.
- 10. Discuss the *n*th falling power $x^{\underline{n}}$ and the *n*th rising power x^n .
- 11. Present Stirling numbers of the 1st kind $\begin{bmatrix} n \\ k \end{bmatrix}$, aka cycle numbers.

 12. Present Stirling numbers of the 2st kind $\begin{bmatrix} n \\ k \end{bmatrix}$, aka subset numbers.
- 13. Discuss the Stirling formula (giving an approximation for *n*!)
- 14. Define the Euler gamma function Γ and discuss its relation to the factorial function.
- 15. Calculate $\Gamma(1/2)$.
- 16. Give the classical (aka Laplace) definition of the probability, Pr.
- 17. List properties of the probability (including the Venn diagram illustrations).
- 18. Define the conditional probability Pr(B|A) (saying how we word it).
- 19. Present the multiplication rule for the probability and the law of total probability.
- 20. Discuss Bayes' formula.
- 21. Discuss the Bayesian updating (in terms of hypotheses K and G and evidences P and N; K as 'krank', G as 'gesund', P as positive, N as negative).
- 22. Explain the pair-matching table (with explanation about K and G, P and N) and its numeric correspondences: cross quantitative matrix, cross frequentative matrix.
- 23. Define the sensitivity (Sens) and the specificity (Spec), the significance ($\alpha = 1 - \text{Sens}$) and the power ($\beta = 1 - \text{Spec}$) of the test.
- 24. Discuss the hypothesis testing use such notions as empirical distribution, null and alternative hypothesis (H₀ and H₁) test statistics t_{empir} and t_{theor} , rejection region R_{theor} .
- 25. Discuss the DiscreteTriangular(2) distribution.
- 26. Discuss the Bernoulli(p) and Binomial(n, p) distributions.
- 27. Discuss the Poisson(λ) distribution, incl. calculation of $\sum_{k=0,1,2,...,f_k}$, E(X) and Var(X).
- 28. Discuss the Gauss(μ , σ) distribution, aka Normal(μ , σ) distribution, including calculation of $\Sigma_{k=0,1,2,...}f_k$, E(X) and Var(X).
- 29. *Discuss the Exponential(λ) distribution.
- 30. *Discuss the ChiSquared(*m*) distribution.
- 31. *Discuss the Gamma(k, s) distribution.
- 32. Define PMF and PDF, CDF and *MGF of a (discrete, continuous) random variable.
- 33. *Define the geometrical probability and present Bertrand paradox.
 - * Subjects not realized due to the cancellations of classes (5/15=20%). Students aiming to get the highest mark (A = bardzo dobry) are asked to master these topics.